Heating in periodically driven Floquet systems

Anushya Chandran

Boston University

Floquet system

Periodically driven isolated system

Few-body Floquet systems

Rabi oscillations

www.www.www.www.

Amplitude of drive → Frequency

Kapitza pendulum

New stable equilibrium

Few-body Floquet systems

Rabi oscillations

www.www.www.www.

Amplitude of drive → Frequency

Kapitza pendulum

New stable equilibrium

Many-body?

Interest: fundamental & engineering

Simplest non-equilibrium setting: what can happen?

Engineer new states out of equilibrium?

Interest: fundamental & engineering

ишилишилишилишил

Simplest non-equilibrium setting: what can happen?

Engineer new states out of equilibrium?

Wang et al (Gedik group) Science (2013)

Aidelsburger et al (Bloch group) Nature (2014)

Outline

Steady states of Floquet systems

Thermal

(infinite temperature)

Time crystal

(period doubling in an "integrable" theory)

Many-body localized

(persistent local memory)

Thermalization in isolated systems

umurumurumurumur ****

Local state

$$\rho_A(t) = \text{Tr}_B |\psi(t)\rangle \langle \psi(t)|$$

Thermalization in isolated systems

Local state

$$\rho_A(t) = \text{Tr}_B |\psi(t)\rangle \langle \psi(t)|$$

No driving

$$\lim_{t \to \infty} \rho_A(t) = \frac{1}{Z} \text{Tr}_B e^{-\beta H}$$

Thermalization in isolated systems

www.www.www.www.

Local state

$$\rho_A(t) = \text{Tr}_B |\psi(t)\rangle \langle \psi(t)|$$

No driving

$$\lim_{t \to \infty} \rho_A(t) = \frac{1}{Z} \operatorname{Tr}_B e^{-\beta H}$$

With driving

$$\lim_{t \to \infty} \rho_A(t) = \frac{1}{Z} \operatorname{Tr}_B e^{-\beta H}$$

$$\propto 1$$

Eigenstate thermalization hypothesis (ETH)

For all eigenstates E_i at inverse temperature β

$$\rho_A = \text{Tr}_B |E_i\rangle\langle E_i| = \frac{1}{Z} \text{Tr}_B e^{-\beta H}$$

$$H|E_i\rangle = E_i|E_i\rangle$$

ETH \Rightarrow thermalization Generically thermalization seems to \Rightarrow ETH

www.www.www.www.

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Floquet/periodic evolution:

$$U(T) = Te^{-i\int_0^T H(t)dt'}$$

umunumunumunu

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Floquet/periodic evolution:

$$U(T) = Te^{-i\int_0^T H(t)dt'}$$

Energy

ишигишигишигишиг

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Floquet/periodic evolution:

$$U(T) = Te^{-i\int_0^T H(t)dt'}$$

Energy

Floquet Quasi-energy

www.www.www.www.ww

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Undriven eigenstates ETH

Energy

Floquet Quasi-energy

ишигишигишигишиг

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Undriven eigenstates ETH

Driven eigenstates?

Energy

Floquet Quasi-energy

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Undriven eigenstates ETH

Driven eigenstates?

Local drive: $\langle E_{\beta}|U(T)|E_{\alpha}\rangle \sim \frac{1}{\sqrt{2L}}$

Floquet Quasi-energy

$$H(t) = H_0 + V \cos(\omega t) H_1$$

Undriven eigenstates ETH

Driven eigenstates?

Local drive:
$$\langle E_{\beta}|U(T)|E_{\alpha}\rangle \sim \frac{1}{\sqrt{2^L}}$$

$$\Delta_{lphaeta}\simrac{1}{2^L}$$

Floquet Quasi-energy

$$H(t) = H_0 + V\cos(\omega t)H_1$$

Undriven eigenstates ETH

Driven eigenstates?

Local drive:
$$\langle E_{\beta}|U(T)|E_{\alpha}\rangle \sim \frac{1}{\sqrt{2^L}}$$

$$\Delta_{\alpha\beta} \sim rac{1}{2^L}$$

Floquet eigenstates mix all temperatures!

Floquet Quasi-energy

Outline

Steady states of Floquet systems

Thermal

(infinite temperature)

Time crystal

(period doubling in an "integrable" theory)

Many-body localized

(persistent local memory)

www.www.www.www.

Driven O(N) model

$$H(t) = \frac{1}{2} \int d^d x (|\Pi|^2 + |\nabla \Phi|^2 + r(t)|\Phi|^2 + \lambda |\Phi|^4)$$
$$r(t) = r_0 - r_1 \cos(\gamma t)$$

Driven O(N) model

$$H(t) = \frac{1}{2} \int d^d x (|\Pi|^2 + |\nabla \Phi|^2 + r(t)|\Phi|^2 + \lambda |\Phi|^4)$$
$$r(t) = r_0 - r_1 \cos(\gamma t)$$

O(2) version:

Near transition from Mott insulator to superfluid

r(t): modulating tunneling

Driven O(N) model

$$H(t) = \frac{1}{2} \int d^d x (|\Pi|^2 + |\nabla \Phi|^2 + r(t)|\Phi|^2 + \lambda |\Phi|^4)$$
$$r(t) = r_0 - r_1 \cos(\gamma t)$$

Equilibrium: canonical model for symmetry-breaking

Analytical control in the large-N limit Self-consistent classical equations

$$\left(\frac{d^2}{dt^2} + |\vec{k}|^2 + r(t) + N\lambda \int^{\Lambda} \frac{d^d k}{(2\pi)^d} |f_{\vec{k}}(t)|^2 \right) f_{\vec{k}}(t) = 0$$

$$\omega_{\vec{k}}(t)^2 = |k|^2 + r(t) + \frac{r_{eff}(t)}{}$$

Feedback term

Feedback term prevents parametric resonance Steady state: finite correlations with structure "Integrable": unknown generalized Gibbs ensemble

Period doubling in the driven ferromagnet

Drive period = π

ишигишигишигишиг

Outline

Steady states of Floquet systems

Thermal

(infinite temperature)

Time crystal

(period doubling in an "integrable" theory)

Many-body localized

(persistent local memory)

Periodic circuits

umurumurumur

Floquet evolution without H(t)!

Clifford circuits

- Clifford gates: Hadamard, Phase, CNOT
- Efficiently simulable (poly(N) time for N qubits)

•
$$U^{\dagger}(X_1 \otimes Z_2 \otimes \dots 1_N)U = Y_1 \otimes X_2 \otimes \dots Z_N$$

Can entangle

• Infinite temperature locally?

Thermalization

umurumurumur

Thermalization

Thermalization

- Operator support grows in time
 - $\rho_A = 1$ for $t > vN_A$
- Simulable system that thermalizes!

Localization

- Strictly local integrals of motion: Zi
- Block spread of information
- Transition to thermalization: percolation of operator support

Outline

Steady states of Floquet systems

(infinite temperature)

Time crystal

(period doubling in an "integrable" theory)

Many-body localized

(persistent local memory)

Outline

Steady states of Floquet systems

Pre-thermal classification?

With dissipation?

Thank you

Thank you to my collaborators

Dima Abanin, Chris Laumann, Zlatko Papic, Pedro Ponte & Shivaji Sondhi

&

Thank you for your attention!

