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Floquet system
Periodically driven isolated system

Hamiltonian H0

H(t) = H0 + V cos(!t)H1
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Few-body Floquet systems

Kapitza pendulum

New stable equilibrium 

Rabi oscillations

Amplitude of drive ➡ Frequency
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Few-body Floquet systems

Many-body?

Kapitza pendulum

New stable equilibrium 

Rabi oscillations

Amplitude of drive ➡ Frequency

Time
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Interest: fundamental & engineering
Simplest non-equilibrium setting:  

what can happen?

Engineer new states out of 
equilibrium?
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Interest: fundamental & engineering
Simplest non-equilibrium setting:  

what can happen?
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Wang et al (Gedik group)  
Science (2013)

Aidelsburger et al (Bloch group) 
Nature (2014)

Engineer new states out of 
equilibrium?
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Outline

Thermal

Time crystal

Many-body localized

Steady states of Floquet systems

(infinite  
temperature) (period doubling  

in an “integrable” theory)

(persistent local 
memory)
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Thermalization in isolated systems

A

B

| (t)i

⇢A(t) = TrB | (t)ih (t)|
Local state
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A

B

| (t)i

⇢A(t) = TrB | (t)ih (t)|
Local state

No driving

        

    
    

        

      
  

lim
t!1

⇢A(t) =
1

Z
TrBe

��H

Thermalization in isolated systems
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⇢A(t) = TrB | (t)ih (t)|
Local state

No driving
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With driving
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Thermalization in isolated systems
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Eigenstate thermalization hypothesis (ETH)

Deutsch (1991) 
Srednicki (1994) 

A

B

        

    
    

        

      
  

For all eigenstates       
at inverse temperature 

H|Eii = Ei|Eii

⇢A = TrB |EiihEi| =
1

Z
TrBe

��H

Ei

�

ETH ⇒ thermalization 
Generically thermalization seems to ⇒ ETH
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

U(T ) = Te�i
R T
0 H(t)dt0Floquet/periodic  

evolution: 
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

U(T ) = Te�i
R T
0 H(t)dt0

Energy

H0

Floquet/periodic  
evolution: 
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

U(T ) = Te�i
R T
0 H(t)dt0

Energy

H0

Floquet/periodic  
evolution: 

Floquet Quasi-energy

U(T )
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

Energy

H0

Floquet Quasi-energy

U(T )

Undriven eigenstates ETH

Hot

Cold
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

Energy

H0

Floquet Quasi-energy

U(T )

Undriven eigenstates ETH

Hot

Cold

Driven eigenstates ?
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

Undriven eigenstates ETH

Driven eigenstates ?

Floquet Quasi-energy

U(T )

↵
�

Ponte, AC, Papic, Abanin (2015)
Deutsch (1991) 

Srednicki (1994) 

Local drive: hE� |U(T )|E↵i ⇠
1p
2L
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

Undriven eigenstates ETH

Driven eigenstates ?

Floquet Quasi-energy

U(T )

↵
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Ponte, AC, Papic, Abanin (2015)
Deutsch (1991) 

Srednicki (1994) 

Local drive: hE� |U(T )|E↵i ⇠
1p
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Driven eigenstates
H(t) = H0 + V cos(!t)H1

Undriven eigenstates ETH

Driven eigenstates ?

Local drive:

Floquet Quasi-energy

U(T )

Ponte, AC, Papic, Abanin (2015)
Deutsch (1991) 

Srednicki (1994) 

Floquet eigenstates mix all temperatures!

hE� |U(T )|E↵i ⇠
1p
2L

�↵� ⇠ 1

2L
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Outline

Thermal

Time crystal

Many-body localized

Steady states of Floquet systems

(infinite  
temperature) (period doubling  

in an “integrable” theory)

(persistent local 
memory)
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Interacting driven bosons

AC, Sondhi (2015)

Driven O(N) model

r(t) = r0 � r1 cos(�t)

H(t) =
1

2

Z
ddx(|⇧|2 + |r�|2 + r(t)|�|2 + �|�|4)
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Interacting driven bosons

AC, Sondhi (2015)

Driven O(N) model

r(t) = r0 � r1 cos(�t)

O(2) version: 

Near transition from Mott 
insulator to superfluid

r(t): modulating tunneling

H(t) =
1

2

Z
ddx(|⇧|2 + |r�|2 + r(t)|�|2 + �|�|4)
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Interacting driven bosons
Driven O(N) model

r(t) = r0 � r1 cos(�t)

Analytical control in the large-N limit
Self-consistent classical equations

3

where ↵k, �k are complex numbers determined by the
initial conditions and Eq. (4). The energy density and
other spatially local observables involve integrals over the
mode functions in k-space. As the magnitude of each
mode function is bounded in Eq. (9), all such observables
remain bounded as t ! 1. Further, it is straightforward
to show that local observables oscillate in synchrony with
the drive as t ! 1. For example, h�2

i (t)i is given by:

h�2
i (t)i =

Z ⇤ ddk

(2⇡)d
�k|�m

~k
(t)|2 + 2Re[e�2iqkt�m

~k
(t)]

where �k and �m
~k

(t) are related to the parameters in

Eq. (9). The second term decays as 1/td/2 as t ! 1
while the first term has the same period T = ⇡ as the
drive. Thus, h�2

i (t)i = h�2
i (t + ⇡)i as t ! 1.

The phase diagram is sketched in Fig. 2. The simplest
stable phase lies at small ⇤2/�2, r0/�2; here the drive
frequency � is much greater than any other energy scale
in the system. However, the additional stable phases
are non-trivial consequences of the band structure of the
Mathieu equation.

When the mode range intersects the Mathieu band-
gaps, the corresponding mode functions increase expo-
nentially in time, exhibiting parametric resonance. Con-
sequently, the energy density (and other local observ-
ables) also grow exponentially in time and the system
heats indefinitely. The heating time-scale is given by
the inverse of the largest band-gap intersecting with the
mode range. It is important to note that at any fixed bare
mass and drive parameters, the theory is always unstable
for su�ciently large cuto↵ ⇤ as the mode range increases
with ⇤.

It is sometimes useful to think of the evolution over
a period T = 2⇡/� as being generated by an e↵ective
Floquet Hamiltonian HF :

U(T ) = e�iHF T (10)

where U(T ) is the evolution operator for a period [3, 34].
As the theory is quadratic, HF can be chosen to be
quadratic in the field operators. In the stable regime,
the mode spectrum of HF is non-negative and the eigen-
modes are normalizable. By expanding any initial state
in this eigenbasis, it is easily seen that the late time re-
sponse is stable and periodic. In the unstable regime,
on the other hand, the mode spectrum includes negative
energies and corresponding unnormalizable eigenmodes.
This is what allows the system to absorb energy indefi-
nitely. For more details, see Ref. [32].

We end with three comments. First, the physics dis-
cussed above applies to any spatial dimension d � 1.
Second, in the phase diagram in Fig. 2, the stable region
persists to some r0/�2 < 0. Thus, the driven Gaussian
theory can be stable even when the equilibrium theory
is not. Finally, “energy density” when unqualified refers
to either the instantaneous energy density or the energy
density with respect to the time-averaged Hamiltonian.
Both diverge when the system heats up to infinite tem-
perature.

r0/�21/4

1/4

⇤2

�2

1

3/4

FIG. 2: The dynamical phase diagram of the driven Gaus-
sian theory at fixed g/�2. Unshaded/shaded regions are sta-
ble/unstable. The band gaps in the Mathieu spectrum deter-
mine the phase boundaries.

III. DRIVEN PARAMAGNET

We now turn to the interacting O(N) model with a
sinusoidally varying bare mass. The Hamiltonian reads:

H(t) = H0(t) +
�

4N

NX

i=1

Z
ddx (�i(~x))4 (11)

At infinite N , (�i(~x)�i(~x))/N acts like a classical time-
dependent field and can be replaced by its expectation
value. In the absence of the drive in equilibrium (r1 = 0),
the model is paramagnetic for all r0 > rc and sponta-
neously breaks the O(N) symmetry for r0 < rc. The
value of rc is determined by d: in d = 1, rc = �1,
while in d � 2, rc is negative and finite. Further, the
symmetry-broken phase extends to finite temperatures
for d � 3. In this section, we focus on the coherently
driven paramagnet.

Expanding in a fixed basis of creation/annihilation op-
erators as before, we obtain the equations of motion:
 

d2

dt2
+ |~k|2 + r(t) + �

Z ⇤ ddk

(2⇡)d
|f~k(t)|2

!
f~k(t) = 0

(12)

assuming that f~k(t) is the same for every component and
using the relation (no summation on i):

h�2
i (t)i =

Z
ddk

(2⇡)d
|f~k(t)|2 (13)

As the system is spatially homogenous, h�2
i i only de-

pends on t. For more details, see Ref. [30]. As a conse-
quence of the quartic term, Eq. (12) is non-linear in the
mode-functions. Re-writing in dimensionless units:
 

d2

dt2
+ Ek � 2g cos(2t) + u

Z ⇤ ddk

(2⇡)d
|f~k(t)|2

!
f~k(t) = 0

(14)

H(t) =
1

2

Z
ddx(|⇧|2 + |r�|2 + r(t)|�|2 + �|�|4)

AC, Sondhi (2015)

Equilibrium: canonical model for symmetry-breaking

N�
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Interacting driven bosons

!~k(t)
2 = |k|2 + r(t) + reff (t)

~k1 ~k2 ~k3

Feedback term

AC, Sondhi (2015)

Feedback term prevents parametric resonance 

“Integrable”: unknown generalized Gibbs ensemble
Steady state: finite correlations with structure
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Period doubling in the driven ferromagnet
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AC, Sondhi (2015)

Drive period = ⇡
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Outline

Thermal

Time crystal

Many-body localized

Steady states of Floquet systems

(infinite  
temperature) (period doubling  

in an “integrable” theory)

(persistent local 
memory)
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Periodic circuits

U

| (n)i

| (n+ 1)i

| (n)i = Un| (0)i

Floquet evolution without H(t)!
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Clifford circuits

• Clifford gates: Hadamard, Phase, CNOT 

• Efficiently simulable (poly(N) time for N qubits) 

•   

• Can entangle 

• Infinite temperature locally? 

U†(X1 ⌦ Z2 ⌦ . . . 1N )U = Y1 ⌦X2 ⌦ . . . ZN

Gottesman-Knill (1996) 
Aaronson & Gotteman (2004)
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Thermalization

t

U

a b c x

X

Y

Z

AC, C. R. Laumann (2015)
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Thermalization

t

U

a b c x

A

X

Y

Z

t

NA = 20

S
A
(t
)

SA(t) = �Tr⇢A log2 ⇢A

AC, C. R. Laumann (2015)
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Thermalization

t

U

a b c x

⇢A = 1 for t > vNA

A

X

Y

Z

t

NA = 20

S
A
(t
)

SA(t) = �Tr⇢A log2 ⇢A

AC, C. R. Laumann (2015)

• Operator support grows in time 

•   

• Simulable system that thermalizes!
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Localization

t

x

S
A
(t
)

tA

• Strictly local integrals of motion: Zi 

• Block spread of information 

• Transition to thermalization: percolation of operator support

AC, C. R. Laumann (2015)
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(infinite  
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in an “integrable” theory)

(persistent local 
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Outline

Thermal

Time crystal

Many-body localized

Steady states of Floquet systems

(infinite  
temperature) (period doubling  

in an “integrable” theory)

(persistent local 
memory)

? ?
Pre-thermal classification? With dissipation?
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U

a b c x

Thank you

Thank you for your attention!

Thank you to my collaborators

Dima Abanin, Chris Laumann, 
Zlatko Papic, Pedro Ponte & Shivaji Sondhi
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